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ABSTRACT 
In this paper we investigate the rotordynamics of a geared system with coupled lateral, torsional and axial vibrations, with a view toward 
understanding the severe vibration problems that occurred on a 28-MW turboset consisting of steam turbine, double helical gear and 
generator. The new dynamic model of the shaft line was based on the most accurate simulation of the static shaft lines, which are 
influenced by variable steam forces and load-dependent gear forces. The gear forces determine the static shaft position in the bearing shell. 
Each speed and load condition results in a new static bending line which defines the boundary condition for the dynamic vibration 
calculation of the coupled lateral, torsional and axial systems. Rigid disk and distributed springs were used for shaft line modeling. The 
tooth contact was modeled by distributed springs acting normally on the flank surfaces of both helices. A finite element method with 
distributed mass was used for lateral and torsional vibrations. It was coupled to a lumped mass model describing the axial vibrations. The 
forced vibrations due to unbalances and static transmission errors were calculated. The eigenvalue problem was solved by means of a 
stability analysis showing the special behaviors of the coupled system examined. The calculation was successfully applied, and the source 
of the vibration problem could be located as being a gear-related transmission error. Several redesign proposals lead to a reliable and 
satisfactory vibrational behavior of the turboset. 

 
1 Introduction 

Some unexpected vibration phenomena occurring on a geared turboset 
could not be explained completely by conventional methods. The shaft 
outline of a low- and high-speed string is shown in Fig.1. Only one axial 
bearing at the hot end of the 28-MW steam turbine defines the position of 
the gear and generator in axial direction, while the couplings on the high-
speed and low-speed sides are of the normal flange design. The gear mesh 
of the double helical gear accommodates the low axial forces which may 
result from axial misalignment of the generator rotor in the magnetic field 
of the stator. Good operational experience gathered so far from more than 
100 power plants of the same string concept have proved that this design 
is reliable and easy to install as long as conventional design rules, by 
which resonance conditions are avoided, are adhered to.  

With arrangements of this kind, the vibrations may be excited by 
normal unbalance forces of each rotor as well as by a geometrical 

misalignment of the flange couplings. It is a well known fact that 
all unbalance response calculations and stability evaluations of 
such shaft line configurations are influenced by the loading of the 
gear mesh as the bearing stiffness increases with the growth of the 
load. This behavior will change the resonance tuning of the high-
speed shaft line. Therefore it is necessary to consider static effects 
in the described arrangement at all speed and load conditions. 

Torsional frequencies may be excited by oscillating generator 
moments with short -circuit or electrical fault conditions. Vibrations 
of the transmission angle due to small deviations of the 
accumulated pitch error of the gear mesh can also excite the system 
with all harmonic portions inherent in the spectrum of the pitch 
errors of the pinion and the bull wheel. Such deviations may excite 
lateral, torsional and axial vibrations. 

 

 
Fig. 1  Shaft and bearing arrangement of a 28 MW turboset (ABB Turbinen Nürnberg, Germany) 
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Current practice is to handle the vibration phenomena of both 

shaft lines separately by 2-dimensional rotordynamics (Mittwollen 
et al., 1991 / Han et al., 1995), considering the special alignment 
situation and the additional bearing forces caused by the moment 
transmission in both wheels. The bearing data are depending on 
the load and the load angle and have to be carefully calculated for 
each speed and load case with external forces acting on the 
bending line. This procedure is described by Hubensteiner et al. 
(1994) using proven codes for bearing data (Han, 1983 / 
Mittwollen, 1991) in a 2-dimensional application with interpolation 
for load and load angle. Carefully examining the force 
transmission and the real possibility of motion of the gear-
connected shafts, it is obvious that both shafts can only vibrate in a 
combined motion, as the gear mesh behaves much more stiffly 
than the rotor journal bearings. 

In the case of the example shown in Fig. 1, two phenomena occurred 
which could not be explained by the normal rotor dynamics of the 
uncoupled system. The first was a coupled torsional and bending 
instability at a low 10% load, in which the shaft vibrated with the first 
torsional frequency. This frequency was obtained from the eigenvalue 
analysis of torsional vibrations.  This phenomena could be explained by 
the possible occurrence of a normally unexcitable horizontal lateral 
frequency of the shaft which is supported in 2-lobe bearings. Due to the 
gear kinematics, the shaft is forced to vibrate in a nearly horizontal mode 
with lower damping. 

The more severe vibrations occurred in axial direction with very 
high 50-Hz amplitudes at the axial bearing of the turbine, which 
was running at 98 Hz nominal speed. These vibrations were 
transmitted from the generator and wheel set, though their 
vibration values amounted to only half of the axial turbine 
vibration amplitudes. The main goal of this investigation is to 
explain this behavior with the help of a complete static and 
dynamic model excited by unbalances and gear transmission 
errors. The transmission error is defined , for any instantaneous 
position of one gear, as the position departure of the mating gear 
from the position it would occupy if the gear teeth were rigid and 
the system were perfect. (Kishor and Gupta , 1989) 
 
2 State of the art in multi-string rotor dynamics 

Coupled vibrations and instabilities were found in a number of 
quite different geared machine by Yamaha, Mist (1979), Rachel and 
Szenasi (1980). The theory of coupled vibrations due to gear pair 
has been studied by many researchers. Iannuzzelli and Elward 
(1984) describe in their study tha t some measured eigen-
frequencies of a geared compressor can be verified only by 
considering the torsional and lateral coupling due to the gear. 
Simmon and Smalley (1984) found by experimental and analytical 
investigations that some unexpected high torsional damping 
values are associated with high lateral vibrations. Iida et al (1980) 
base their study on a simple geared-rotor system including the 
effects of torsional-flexural coupling. This study only considers the 
flexibility of the driven shaft acting together with a stiff driving 
shaft. Neriya et al (1984) extended this study by considering the 
flexibility of the driving shaft as well. Schwibinger et al (1988) 

concluded that the coupling not only affects the eigenfrequencies 
and modes, but also the forced vibrations due to mass unbalances 
in their study. Kishor and Gupta (1989) examined the dynamic 
gear load in a simple geared rotor supported by hydrodynamic 
journal bearings. In this study the effects of mass unbalance and 
transmission errors were calculated, including the contact loss 
problems, by using the time integration method. Choy et al  (1991) 
extended their previous study by including the effects of gear box 
motions. They used modal analysis to reduce the degrees of 
freedom, and applied the time integration method. The influence 
of gear forces on the static behavior of a geared shaft line was 
studied by Hubensteiner et al. (1994), where questions of the shaft 
arrangements on static and dynamic behavior were investigated. 
The new modeling which includes the axial vibrations is derived 
for a simple helical geared system by Blankenship et al. (1995) and 
Kahraman (1994). 

However, only the coupled effect between lateral and torsional 
vibrations or only a simple mass model with axial included 
vibrations wa s considered in most of the earlier studies. Therefore, 
new calculation models that include the coupled axial vibrations 
were developed for a helical gear to simulate and explain the 
measured vibrations. The main goal was to find out the realistic 
overload factor of the gear mesh due to this special shaft 
arrangement. 

The gear pairs were modeled by rigid disks and distributed 
springs along the contact line, and the shafts were modeled using 
the finite element method and the lumped mass method. The 
amplitudes of vibrations and dynamic forces due to mass 
unbalances and transmission errors were calculated and compared 
with the measurement. The damped eigenvalue problems were 
solved by means of a stability analysis to explain the actually 
observed behavior. 

 
3 Analytical modeling of the coupled system 
3.1 Static shaft lines 

The mass and stiffness distribution of the rotor system defines 
the bending lines of the multi bearing shaft arrangement in a 
conventional way. But the actual situation has to be simulated 
carefully based on three steps: search of the basic bearing position, 
equilibrium of the bending line support forces in the bearing shell 
and finally calculation of the bending line influenced by the oil 
film.  

The static bearing position of each bearing shell in a multi-
bearing line is defined by the ideal connection of the coupling 
flanges without angle deviation and free of eccentricity. This is 
demonstrated in Fig. 2. In horizontal direction the bearings are to 
be mounted in an ideal strait line. Deviations due to heat 
expansion or other effects have to be evaluated separately and 
finally taken into account well defined shift of the bearings away 
from the here defined basic values. Starting with the bearing loads 
calculated from the above mounting position the rotor equilibrium 
on the bearing oil film can be found for a defined speed and 
external load acting on the shaft.  

 

 
(a) view from side 
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(b) view from top 

Fig. 2  Ideal alignment of shaft lines 

The change of the equilibrium point in the journal bearings with 
load makes it necessary to recalculate the shaft bending lines, 
producing a new result as input for the above shaft position in the 
bearing shell. This example demonstrates that an iteration has to 
be applied to find the actual static positions of the coupled shaft 
lines taking into account the bearing properties at each speed and 
load point. The latter depends on the gear force, and also on the 
load-dependent forces acting in the control stage of the steam 
turbine. At each equilibrium of the shaft line the linear stiffness 
and damping coefficients of the journal bearing are defined, and 
can finally be used in linear rotordynamics calculating forced 
response and eigenvalues of the gear coupled rotors. 

 
3.2 Vibration model of the coupled shaft line 

Finite element modeling is used to analyze the lateral and 
torsional vibrations, considering the gyro and shear effects (Han et 
al., 1995). The finite element consists of two nodes, where each 
node has 5 degrees of freedom by way of two lateral 
displacements, two bending rotation angles, and a torsional 
rotation angle. A lumped mass modeling is used for the analysis of 
axial vibrations. Then the equations of motion of a typical rotor 
bearing system can be written as, 
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where the global displacement vector {q} and the force vector {f}, 

based on the nodal coordinates system as shown in Fig. 3, are 
represented by 
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Fig. 3  Nodal coordinate system of a finite shaft element 

 
 

3.3 Gear modeling 

The gear pair is modeled by rigid disks and linearly distributed 
springs along the contact lines. The gear pair used for analytical 
modeling is shown in Fig. 4, where α and β  are transverse pressure 
angle and helical angle respectively. The displacement vector of 
the contact points can be written as a function of s, which is a local 
coordinate to the axial direction. 
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Then the normal displacements of the contact points can be 
obtained by using of following vector calculations. 

( ) ( )ϖ ϖ ϖ ϖ
δ δ δ δin i n n jn j n ne e e e= ⋅ = ⋅∃ ∃ , ∃ ∃  (4) 

where, ên is a unit normal vector of the contact point defined as 
∃ sin ∃ sin cos ∃ cos cos ∃e e e en x y z= + +β α β α β  (5) 
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Fig. 4  Schematic diagram of a gear pair 
 

Using equation (3), (4) and (5) we can get ê the normal 
displacement vectors as follows. 
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Then the normal reaction forces for the infinitesimal element can 
be as given below 

( ) ( ) ( )dF k s s s dsn jn in= −
ϖ ϖ
δ δ  (7) 

where k(s) is the specific stiffness. Now, we consider linear 
distributions of the mesh stiffness for simplifying the modeling as 
shown in Fig. 5. Then any nonlinear distribution can be solved by 
superposition of the linear distribution results. The functions of the 
distributions are expressed as 

( ) ( )k s k k
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−
− +  (8) 
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As we can see from equation (7), the total reacting forces due to 
displacement can be derived using integration as follows. 
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The basic stiffness matrix can be obtained by arranging the 
above results in the following equation. 
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Fig. 5  Assumed linear distribution of the stiffness along contact 
width 

 
Now we consider a coordinate transformation of a rotation γ 

which is given in Fig. 6. Then the general stiffness matrix [KG] of 
the gear pair can be written as 
[ ] ( )[ ] [ ] ( )[ ]K R K RG

T
G
B= γ γ   (11) 

where ( )[ ]R γ  is a general transformation matrix for the rotation 
γ. 

Considering static transmission errors in the gear meshes, such 
as pitch errors or axial apex wobbles, which are the result of above 
errors, the contact points will vary as a function of rotating angle. 
So the reaction force of the mesh can be rewritten as follows 
(Kishor and Gupta, 1989). 
[ ] { } { }( ) { }K q p fG G G− =  (12) 

where {q} is the displacement vector of the two gears' nodes and 
{pG} is the vector of transmission error. 

The expression for the transmission errors can be rewritten by 
using the Fourier transformation. 
{ } { } { }( )p p t p tG Gci i Gsi i

i
= +∑ cos sinΩ Ω  (13) 

After combining all of the above equations, the following 
equation of motion results. 
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Fig. 6  Coordinate transformation of the location angle 

 
4 Numerical Results 
 
4.1 Unbalance calculation 

The calculation model of the turboset has 37 nodes of lateral and 
torsional vibrations and 5 nodes for the axial directions. Thus, they 
have 200 degrees of freedom in all. The dynamic coefficients of the 
seals and bearings with respect to speed and load are calculated 
for all static equilibrium conditions which mean a steady state 
operating point for a given speed and loading condition. The data 
of unbalances are assumed as the maximum of the very 
unbalanced turbine rotor and generator rotor, which is 
recommended  by the company. The actual values are given in Fig. 
7. 

We first calculate the amplitude of vibrations and the dynamic 
gear force due to unbalances. The results of the unbalance response 
are shown in Fig. 8 assuming a turbine unbalance and Fig. 9 for an 
unbalance in the generator rotor. The abscissa was split into an 
interval of increasing speed from 0 to 1, meaning 100% operational 
speed, and into a load portion from 0% to 100% load, exactly as the 
turbine is actually operated. All calculation results are about the 
vibrations at the midspan of each component as shown in Fig. 7. 

From the results of Fig. 8 we see that the coupled effects due to 
the turbine unbalances are just slightly visible by amplitudes of the 
rotors being away from the turbine. This means that the 
amplitudes due to a turbine unbalance are nearly zero in the 
generator. The dynamic gear forces will only amount to 0.4 percent 
of the static value in this case.  

A high generator unbalance which is assumed in Fig. 9 may 
cause small lateral vibration amplitudes of the turbine. The 
dynamic gear forces reach a value of 1.2 percent of the static force 
only. We do not expect any gear failures from those unbalances. 

The axial amplitudes excited by the generator unbalance will 
lead to a tilting motion of the wheel and thereby excite axial 
vibrations of the shaft line. We see that the axial amplitudes at the 
turbine are even higher than those at the pinion and the wheel. It 
should be mentioned that this is a forced motion and must not be 
caused by a special resonance condition. The effects of amplitudes 
being higher at the turbine then those of the wheel can be 
explained by the different size of masses connected by the shaft 
spring. The value of amplitudes, however, is with 5 µm o-p far 
below the actual measured value of 35 µm o-p. 
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Cax_B=1000 [kN/mm]

Cax_C=990 [kN/mm]

turbine

generator

Cax_G=3700 [kN/mm]

U=26.4 [kgmm]

U=115 [kgmm]

Cax_B = axial stiffness of bearing
Cax_C = axial stiffness of turbine coupling
Cax_C = axial stiffness of generator coupling
            = nodal position for the calculation results

 
 

Fig. 7  Calculation system with definition of unbalances and amplitude margins. 
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Fig. 8  Vibrations due to unbalance U1 in the turbine, speed ratio  n
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Fig. 9  Vibrations due to unbalance U2 in the generator, speed ratio n
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4.2 Excitation due to transmission errors 
In order to find an explanation for the high axial vibrations at 

the turbine bearing, further investigations were made by applying 
transmission errors of the gear. Those errors are inherent in each 
gear due to the normal manufacturing tolerances. In the actual case 
two identical turbosets showed completely different behavior in 
their axial vibrations and also the different reliability resulting 
from them.  

The reason for it could be derived from the difference of the 
measured accumulated pitch error. One turbo gear had 8.5 µm o-p 
amplitude of accumulated pitch error, while the other had only 
less than 4 µm o-p. The two machines showed completely different 
vibration and wear effects, which were problematic for one 
turboset but not for the other.  

Now, the main issue of this investigation was to determine the 
height of the dynamic gear forces and axial vibrations due to 
transmission errors. The circumferential variation of the single 
pitch error of each tooth depends on the manufacturing procedure. 
We performed the calculations for the worst case of transmission 
errors, i.e., with 8.5 µm o-p pitch error and also resulting from this 
10 µm o-p axial error. Both errors were estimated with an 
additional worst case factor proportional to the measurements of 
the tooth geometry taken from the usual quality control reports. 
The results of this calculation are shown in Fig. 10. The axial 
vibrations at the turbine with 38 µm o-p at full load and 20 µm at 
partial load are very similar to the measured values. The overload 
factor of the gear can be easily derived from this calculation, also 
shown in Fig. 10. As we see, the dynamic tooth forces of the gear 
may be up to 15 percent of mean static forces. On one hand, this is 
a rather high value describing the overload produced by the 
geometry of the wheel set which is stiffly fixed between two heavy 
masses. On the other hand, the value is small as it should be 
covered by the overload factor of the static gear design calculation. 
The reason for the load dependency of the vibrations described in 
the above figure can easily be explained by the increase of gear 
forces causing an increase of bearing forces and bearing stiffness. 
Therefore, the resonance frequency of the dominant axial mode 
gets closer to the operating speeds. Additional calculations proved 
that the above described pitch errors with higher frequencies also 
give cause for worry because, with lower failure amplitudes 
exciting higher frequencies, they can produce nearly the same 
overload factor. Also, resonance conditions can occur with these 
higher frequencies and cause much higher gear overloads. To 
avoid overload to the gear, the pinion or the gear wheel must be 
vibrationaly separated from the heavy masses of the turbine or the 
generator. This can be achieved by employing an axially very 
flexible diaphragm coupling instead of the rather stiff intermediate 
shaft at the location of C1 and C2. Also, the bearing types were 
changed to avoid the instabilities. The changes are described by 
offset-halves instead of the 2-lobe type bearings for the pinion, and 
2-lobe instead of cylindrical bearings for the generator. Compared 

with Fig. 10, the success of these measures can be clearly seen in 
Fig. 10. Here the pinion still vibrates with the same almost 20 µm 
amplitude in axial direction, but the turbine vibrations disappear 
as well as the additional gear forces fall to a negligible value. 

This excellent improvement has been achieved with the strategy 
of vibration isolation of the exciting motion from the heavy mass. 
Systematic investigations can also be very helpful in 
understanding the main influences on the vibration system. The 
variable springs are in this case that of the axial bearing and that of 
the coupling between turbine and pinion. Parameter studies have 
been made to check the influence of both springs in Fig 12 and Fig. 
13. The no load and the full load case have been taken as 
representative in this case. The basis value of axial bearing spring 
was 1000 kN/mm and the same value for the original design of the 
coupling being rather soft due to a chambered flange design 
having only contact at the flange outer diameter. The variation of 
the coupling stiffness shows in Fig. 12 the easy understandable 
behavior that a softer coupling can isolate the pinion vibrations 
from the turbine. Lower stiffness decreases the amplitudes of the 
turbine and as well the gear forces step by step. Varying the 
stiffness of the axial bearing at the turbine we see in Fig 13 some 
not so homogenous behavior. The turbine and pinion amplitudes 
increase with lower axial bearing stiffness. This means that the 
above in Fig. 10 reported influence of the gear transmission error 
can have nearly twice the above value due to a variation of the 
axial bearing stiffness. As it is in fact not exactly possible to 
calculate the stiffness of the axial bearing, the load of which is low 
due to a small and variable steam force, a certain application factor 
has to be considered too in the evaluation of damage risk of the 
original system. Nevertheless the main clause of separating the 
pinion vibrations from the turbine by applying a softer coupling is 
valid and effective for all axial bearing stiffness. 

 
4.3 Stability behavior 

The unstable behavior of the shaft line could not be detected and 
eliminated by the normal 2-dimensional rotor dynamics as 
described above. The new combined method shows in Fig. 14 the 
real and imaginary parts of the eigenvalues, denoted by the decay 
factor u and the frequency v respectively. Negative damping (-u/v 
< 0) means instability which is identified by the hatched area. It 
can be seen that the instable region disappears after nearly 8 
percent load, a fact which is in accordance with the measurements. 

In the redesigned configuration of the string, we changed the 
couplings, used 2-lobe bearings in the generator, and offset-halves 
bearings for the pinion in order to eliminate the instability. The 
calculation results for the new design are shown in Fig. 15. In both 
figures Fig. 14 and 15 only the approximately 19 Hz frequency 
producing the instability was selected. This frequency is identical 
with the first torsional frequency of the system. The instability 
marked by the hatched area was eliminated successfully.  
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Fig. 10  Vibrations due to transmission errors of the original version 
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Fig. 11  Vibrations due to transmission errors for the modified turboset
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Fig. 12  Variation of the coupling stiffness with constant axial 
bearing stiffness of 1000 kN/mm 
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Fig. 13  Variation of the axial bearing stiffness with constant 

coupling stiffness of 1000 kN/mm 
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Fig. 14  The eigenvalue of the unstable ≈ 19 Hz frequency in original configuration
 

0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

100%(0%)

v 
/ Ω

g

Speed  ratio (Load)
0 1

0.000

0.005

0.010

0.015

0.020

100%(0%)

-u
 / 

v

Speed  ratio (Load)

stable
unstable

 
Fig. 15  The eigenvalue of the ≈ 19 Hz frequency in redesigned version 

 
 
5 Conclusion 

The new analytical model for a helical geared system was 
developed considering the coupling between lateral, torsional and 
axial directions. The turboset, on which heavy axial vibrations 
occurred, was investigated and also in the actual plant successfully 
redesigned by using the new 2-string modeling method. The high 
axial vibrations and the high gear forces due to transmission errors 
can be simulated and the results are very similar to the measured 
vibrations. The instability which could not be detected by 
conventional calculations was found as well by using the new 
calculation model.  

The reason for the high axial vibrations of the geared 2-string 
rotordynamic system could not be explained by assuming normal 
unbalances in the calculations. It was only after the gear 
transmission failures had been taken into account that the real 
source of vibrations was detected. The design modifications are 
successfully accomplished by changing the coupling and bearings 
in order to reduce the dynamic forces of the gear and to eliminate 
the instability by applying more stable bearing types.  

Only the calculation of the gear coupled shaft line can detect the 
real source of this vibration system. Conventional methods of two-
dimensional rotordynamics cannot describe the occurring gear 
forces which can not be caused by normal unbalances of the gear 
connected machines in the investigated case. But transmission 
errors of the gear can lead to high dynamic transmission forces. 
The value of those dynamic overload is relatively high but not in 
an absolute dangerous margin for the gear as long as resonance 
conditions will not occur. 
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Nomenclature 
  [M], [C], [G], [K] mass, damping, gyroscopic and stiffness matrix respectively. 
  [KG] stiffness matrix due to gear mesh 
  {qa}, {qb}, {qt} generalized displacement vector to the direction of axial, lateral and torsional respectively 
  {fa}, {fb}, {ft} generalized displacement vector to the directions of axial, lateral and torsional respectively 
δin displacement vector of the contact point in the i-th stage to the normal direction 
  α, β and γ   pressure angle, helical angle and position angle of a gear 
  s local coordinate of a gear 
  ri radius of the gear i 
  X, Y, Z global coordinates 
  (xi, yi, zi) displacement vector of the i-th gear node to the direction of  
  (Θi, Θyi, Θzi) rotational vectors of the i-th gear node 
  k(s) specific stiffness of the mesh stiffness 
Fin, Tin vectors of normal forces and torsion of the i-th gear due to deflections. 
  ên normal vector of the contact point in the i-thgear 
  Ω rotational speed of the i-th rotor 
  {eG} the vector of static transmission errors in the gear 
   U amount of unbalance 
 

 
 


